Nigrostriatal lesions alter oral dyskinesia and c-Fos expression induced by the serotonin agonist 1-(m-chlorophenyl)piperazine in adult rats.
نویسندگان
چکیده
The loss of dopaminergic innervation of the basal ganglia, a group of subcortical regions involved in motor control, is the hallmark of Parkinson's disease. The resulting molecular and cellular alterations mediate behavioral deficits and may modify neuronal responses to other neurotransmitters. In the present study, we sought to determine the effects of chronic dopamine (DA) depletion on responses mediated by stimulation of serotonergic 2C (5-HT(2C)) receptors, a serotonergic receptor subtype present in discrete regions of the basal ganglia. Specifically, the effects of unilateral lesions of nigrostriatal DA neurons on oral dyskinesia and Fos protein expression induced by the non-selective 5-HT(2C) agonist 1-(m-chlorophenyl)piperazine (m-CPP) were examined. Confirming previous findings, both peripheral and local injections of m-CPP into the subthalamic nucleus elicited oral dyskinesia. Nigrostriatal lesions markedly enhanced oral bouts induced by peripheral but not intrasubthalamic administration of m-CPP. In intact rats, Fos expression was increased by m-CPP (1 mg/kg, i.p.) in the striatum and the subthalamic nucleus. After nigrostriatal lesions, m-CPP-induced Fos expression remained unchanged in the subthalamic nucleus but was reduced in the medial quadrants of the striatum and was markedly enhanced in the entopeduncular nucleus. These data demonstrate regionally specific alterations in behavioral and cellular responses to a serotonergic agonist in an animal model of Parkinson's disease.
منابع مشابه
Dexfenfluramine and norfenfluramine: comparison of mechanism of action in feeding and brain Fos-ir studies.
Dexfenfluramine (dF) and dexnorfenfluramine (dNF), its metabolite, are anorectic agents that release serotonin (5-HT) and may have a direct postsynaptic action. The effects on the anorectic effects of dF and dNF of either acute (p-chlorophenylalanine, PCPA) or chronic (5,7-dihydroxytryptamine, 5,7-DHT) brain 5-HT depletions were studied in rats and compared with the actions of a 5-HT uptake inh...
متن کاملSerotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson's disease.
This study examined in naive or hemiparkinsonian rats the effect of various serotonin 2C (5-HT(2C)) receptor ligands differing in their intrinsic activity at 5-HT(2C) receptors on purposeless oral movements, a motor response integrated in the basal ganglia. Intraperitoneal administration of a non-selective [meta-chlorophenylpiperazine (m-CPP) 0.1-3 mg/kg], preferential [S-2-(6-chloro-5-fluoroin...
متن کاملDopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats.
In patients with Parkinson's disease, the therapeutic efficacy of L-DOPA medication is gradually lost over time, and abnormal involuntary movements, dyskinesias, gradually emerge as a prominent side-effect in response to previously beneficial doses of the drug. Here we show that dyskinesia induced by chronic L-DOPA treatment in rats with 6-hydroxydopamine-induced lesions of the nigrostriatal do...
متن کاملIntrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats
Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...
متن کاملAlterations in primary motor cortex neurotransmission and gene expression in hemi-parkinsonian rats with drug-induced dyskinesia.
Treatment of Parkinson's disease (PD) with dopamine replacement relieves symptoms of poverty of movement, but often causes drug-induced dyskinesias. Accumulating clinical and pre-clinical evidence suggests that the primary motor cortex (M1) is involved in the pathophysiology of PD and that modulating cortical activity may be a therapeutic target in PD and dyskinesia. However, surprisingly littl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 13 شماره
صفحات -
تاریخ انتشار 2000